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Abstract
EAGLE is a systemic combat simulation which is currently under development by the

TRADOC Analysis Command at Fort Leavenworth. EAGLE is written using the Aitificial
Intellegence (AI) language LISP, which is ideally suited for describing both combat missions
and decisions in understandable, natural-language terms within an extremely sophiticated
tactics knowledge base.

Earlier reports, however, have asserted that systemic combat models which use the so-
called present-state decisionmaking paradigm have a fundamentally flawed decisionmaking
process. This report investigates the application in EAGLE of an alternative, future-
state decisionmaking architecture, "!1'4 +,I-- Gencialized Value System (G v S), Ctescribes
the general changes to EAGLE code and data structures necessary to implement this
methodology, and presents an example of how we believe this methodology would execute
within EAGLE.
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I. Introduction

Military force planners must continually postulate the scenarios, threats, available

systems, political and economic environments, and national resolves which will exist at
some future time. Moreover, these planners now face increasingly tough choices with
respect to how best commit ever-scarcer resources to procure weapon systems and develop
force structures that are sufficiently effective to deter any postulated future battles from

occurring.

Combat simulation models play a major role in the development of doctrine, force
structures and systems. Several widely varying general approaches to the modeling of
combat have been studied - historical curve fitting (e.g. QJM, [3]); man-in-the-loop (M',IITL)
models (e.g. JANUS, [18]): systemic (no man-in-the-loop) simulations (e.g. VIC. [19] ): and
analytic models (e.g. COMAN, [1]). Of these approaches. systemic and MITL models arn
by far the most commonly used for weapons system and force structure analyses. These

two approaches. however, are not interchangable, and numerous tradeoffs are involved in
the choice between a systemic or an MITL model.

MITL models are generally easier to set up and run. They usually require far less
extensive data bases and can use far simpler programming logic, since real players are
able to react and make decisions in unforseen circumstances. MITL models, however, are
not well suited for many analytical studies because their results are generally difficult to

replicate, and critical cormmand and control decisions usually lack clearly defined audit
tr i ls. Thus. with MITL models, the contributions to the overall outcome of new weapons

systems. force structures and doctrines becomes almost inseparable from the dynamic of
the individual players. the "fog" of even simulated battle, or pure luck. (On the other

hand, most current systemic models require frequent stops fo: code or data modifications
and subsequent restarts when, according to the judgement of analysts, the model fails
to take reasonable or realistic military actions. Continually having to implement such a
stop/restart sequence effectively turns a systemic model into an MITL model, and usually

a very inefficient one at that. Despite this, because of their ability to conduct controlled

replications and produce reasonable audit trails, systemic models seem likely to remain
favored for most analytical studies.)

In an earlier report [11]. we developed the argument that a fundamental flaw in current

systemic combat simulations is the so-called present-state decisionmaking paradigm. In this
paradigm. as exemplified by the Tactical Decision Rules (TDR's) or decision tables of VIC.

the model makes tactical decisions by examining the values of various attributes of modeled

entities and comparing these to certain (generally multiple) test and threshhold values, in
what is effectively little more than "IF ... THEN" constructs. Our position in [11] was that

this paradigm is flawed in that, in reality, all combat decisions above the level of 'imple
battle drill are made, implicitly, to produce some desired result, not at the present time, but

somewhere in the future. The correct role then, of the present state. is really to "trigger"
a planninq process and act as of a set of initial conditions for some other model with which

the futture. and the impact of various alternative actions can be predicted. Therefore.
in our view. the flaw with current decision tables is that the analyst who developed the

table almost certainly had in mind sone predicted future that should occur based on the
present state as reflected in tables. but this model exists only in his or her mind and is



therefore neither able to be validated nor subject to the establishment of audit trails. We
havc further proposed an alternate future-state architecture for decisionmaking in systemic
models as part of the Generalized Val-e System [GVS] developed during the ALARM [4]
project at the Naval Postgraduate School. Selected aspects of the GVS will be outlined
later in this report.

EAGLE [171 is a .ystemic combat simulation which is currently under development
by the TRADOC Analysis Command at Fort Leavenworth and which contains several
novel and significant features. First, EAGLE is written using the object-oriented Artifi-
cial Intellegence (AI) language LISP [6]. Object-oriented programming is widely viewed
as promising significant improvements in programming efficiency through class structure
inheritence and code reuse. LISP processes primarily strings of chaic cters as opposed to
numbers, and is ideally suited for describing both combat missions and decisions in un-
derstandable, natural-language terms. In EAGLE, LISP's Al capability has allowed the
development of aii extremely sophiticated tactics knowledge base to support decisionmak-
ing. Furthermore, EAGLE is the first model we are aware of which was designed from
the outset to essentially mirror the doctrinal Command Estimate process [16] of military
decisionmaking as taught in the Command and General Staff Officer Course.

The purpose of this report is to propose a GVS future-state prediction methodology
that is generally compatible with the EAGLE architecture, to describe the general changes
to EAGLE code and data structures necessary to implement this methodology, and to
outline an example of how we believe this methodology would execute within EAGLE.

II. Future-State Decisionmaking and the Generalized Value System

As we indi.-ated above, and as we investigated at length in [11]. command and control
decisionmaking in current systemic models follows what we have called the present-state
decisionmaking paradigm. That is, the model compares the values of various modeled
quantities to certain (generally multiple) threshhold values, and implements a decision
based on what is effectively an "IF ... THEN" construct. We hold that this paradigm
has the fundamental weakness that only the current values of the attributes are tested
against the decision tables, yet these values should properly be viewed as only initial
conditions from which some future state(s) will evolve, and the fundamental reason why
the model is supposed to trigger a decision is that, in the judgement of the analyst who
developed the table, this future will be undesirable unless some current change is made.
But, with decision tables, the model and process which predicted this undesirable future
are effectively hidden, and really exist only in the analyst or programmer's mind.

Given what we believe to be the fundamentally flawed nature of the present-state
decisionmaking model. we proposed in [11l an alternative architecture for decisionmaking
in systemic models. This proposed architecture blended what we believe are the basic
elements of realistic decisionmaking - the current situation only initiates a planning pro-
cess: this planning process includes an explicit projection of the anticipated future: and
any actions are initiated solely to change this predicted future - with the basic limita-
tions of current computer simulation - most algorithms must be reduced to quantitative
computation. In our proposal, the essential elements of this future-state decisionmakin
architecture, which we referred to as the Generalized Value System. were postulated to be:

I I I I I I I • I II I • II | 2



1. For each model entity, an explicitly defiat-d state vector, consisting of quantifiable
elements which the i,,odel is capable of representing.

2. A plan or mission. This will be essentially a set of time, distance and force-
oriented constraints which a given model decisionmaker will try to satisfy.

3. A set of explicit algorithms which can produce predicted future states of any
given entity, given a present state.

4. A set of algorithms for deriving a quantitative measure (or measures) of the value
of any entity, given the state of that entity. These algorithms must include the
time discounting of value proposed in [10].

5. A set of algorithms for converting a plan or mission and a set of current and
future values into decisions.

Before continuing, we would make one additional point regarding future-state predic-
tion in combat modtls. This point is that there are really four fundaimental, and to some
degree independent, questions that any commnand and control process must address. (In-
terestingly enough, these bear some similarities to certain classic problems in mathematics.
although at this time we see no clearly exploitable advantage in recognizing this relation.)

1. What procedure. algorithm or test determines whether a particular course of
action will (or perhaps more appropriately should) accomplish the mission? This
question is very nmuh like the question of how does one mathematically verify
that a proposed solution to a problem is valid.

2. Is there a feasible course of action which will still accomplish the mission? This
question is akin to the n'athematical question of existence of solutions (which can
often be answered in the affirmative even when a solution cannot be produced).

3. If there are any fea.ible courses of action, is there one which is. under some mea-
sure. optimal? This issue is similar to the mathematical question of uniqueness of
solutions (which. again interestingly, can ofteii be answered even when no solution
has been produced).

4. How can one construct feasible courses of action, given that they exist?

As we proceed in this report. we shall comment on the degree to which proposed structures
and algorithms can answer each of these questions.

As we emphasized in [11], future-state decisionmaking and the GVS are really only
an architecture - a philosophy of how to more accurately model combat decisions - not
any one particular set of algorithms. As we pointed there, several of elements of the
GVS architecture were independent of each other, and could be implemented with more
than one particular algorithm. The primary purpose of this report is to demonstrate the
application of this architecture to the development of specific algorithms for a model now
under development - EAGLE.

III. The EAGLE Model

As we alluded to in the introduction. EAGLE [17] is a new developmental model
with several unique and intriguing features. A complete description of all these features
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is far beyond the scope of this report. (Full details are available to appropriate agencies
from TRADOC Analysis Command. Fort Leavenworth.) Nevertheless. there are a few of
these features that are especailly noteworthy because of their relationship to command and
control modeling. The first is that EAGLE is written in LISP [6], a language originally
developed for Artificip! Intelligence research. LISP is an especially attractive language
for command and control simulations, since it was designed from the outset to be used
for simulating decisions. Virtually all other languages available today, including ADA.
lack this feature, and generally model command and control only with varying degrees of
awkwardness. LISP is also fairly unique in that it operates primarily not on numbers, but
on lists. Numbers may be included in these lists, but more commonly the lists are made up
of strings of characters. Thus, a LISP model can make tactical decisions based on model-
stated criteria such as "receiving-heavy-incoming-fire." This feature provides both almost
immediately self-documenting code, and a degree of visibility and comprehensibility not
offered by TDR's or other current model constructs. Furthermie. LISP also encompasses
very highly structured knowledge bases (KB's) in which not only can command and control
decision logic be deposited, but from which such logic can also be easily recovered and
easily modified. Lastly, current versions of LISP are object-oriented. Object-oriented
programming generally allows for much more robust data structures, since objects can
be ogranized into hierarchies with lower-ranked objects automatically inheriting elements
from objects higher in the structure. Thus a change to the data structure for a "parent"
can be automatically passed on to all of the "children," without the need to modify any
code other than on the parent. (By contrast, changing a single calling arguments string in a
FORTRAN subroutine can require changes to massive numbers of other, related programs.)
This object-oriented structure again seems especially well suited for simulating combat,
since most military entities belong to very well-structured hierarchies.

The EAGLE model has another very appealing feature, apart from its LISP-based
structure. It is the first combat model, to our knowledge, designed from the outset to
incorporate fundamental elements of the doctrinal Command Estimate decisionmaking
process [16] as taught to and used by Army officers during Fort Leavenworth's Connand
and General Staff Officer Course. Major elements of this process are found in the exten-
sive and sophisticated preprocessor being developed as part of the EAGLE project. This
preprocessor is menu-driven and integrated with a terrain KB. Using the preprocessor. an
analyst can rapidly develop a tactical scenario in the same sequence as the Command Es-
timate process. The menus allow formulation of complete sets of plans and orders for each
subordinate unit, and, if necessary, a set of tailored tactical decision rules appropriate for
each plan. Furthermore, each plan is broken into clearly identified phases, with potential
critical events also identified within each phase. Lastly, each phase of a subordinate unit's
plan also is clearly linked to a phase of that subordinate's command headquarters' plan.
(Normally, of course, each phase of a command headquarters plan will encompass several
phases or tasks for a subordinate.)

Actually. EAGLE recognizes two basic types of -units" in the above context. The first
type is called a resolution unit. A resolution unit is both the smallest level tactical unit
played in the model, and the only ground maneuver entity in the model ,vhich engages in
combat activity. A command, or headquarters unit, by contrast, is purely a planning ac-
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tivity, and may have as subordinates either other command units, or resolution units. (An
actual command headquarters. e.g. a brigade HHC, has dual representation - a comxnaind
unit object which represents the planning functions, and a resolution unit which models
the physical functions. such as movement of the command post.) These two object types
are also treated differently in terms EAGLE's mission planning structure (albeit these
differences often seem sibtle and to involve more definitions than substance).

The overall structure of the model decisionmaking architecture in EAGLE starts with
a defined plan (generally prepared using the preprocessor). A plan consists of a sequence
(list) of phases, each associated with a unique order. Each ord r is then another sequence or
list, each element of which contains, as a minimum, a task. an objective, and information on
when or under what conditions that task would start and end. (Curiously, there is no slot in
the task list for the enemy force, if any, to be defeated, or of any degree of destruction to be
inflicted on the enemy. This is certainly less than fully realistic, and does have implications
for any future-state prediction processes.) Resolution units then carry out these orders
through a sequence of operational activities. Figure 1 displays some of the common
phases and tasks that may comprise a plan. and the operationd activities allowable f,r
a ground maneuver unit. Although the conceptual structure of EAGLE allows phases to
start and end at specific times, the current model in fact changes phases under only one of
two criteria - on-order (i.e. when directed by higher) or on-owv--initiative. Thus a critical
aspect of each phase is the transition rules, which are contained in the KIB. that signal the
need to start the next phase. For resolution units. these rules determine whether a change
in phase is warranted by examining various attributes which the mode! documertat ion
refers to under the general heading of the unit's self objective status or self decision factors.
(Like almost all LISP constructs. tbeqe attrib,'e wil be string ,"aloes and the associated
rules string-based. In other words, th- rule for breaking contact may consist of the unit's
objective status being determined to be 'breaking-contact -receivin g-hvy-losses.') While on
order rules are clearly required in order to effect synchronization of the various phases of
the plan. the uncertainity of when they will --fire" does significantly complicate the future-
state prediction problem. Furthermore, indluding time-dictated tranitr, ir any givern
plan will virtually force some kind of future-state prediction, since the amount of combat
power sufficient to accomplish a mission with no time constraints may be insufficient when
time constraits are added. Lastly. in any event, the current on-order transition rules
should be enriched to address such essentially future-state issues as whether requiring one
subordinate resolution unit to assume a hasty defense prior to starting the next phase
of its plan, while another completes its part of the current phase, will result in sufficient
additional losses that the first unit then becomes ineffective to perform its next task? (We
refer to this last question as the slack time issue, and shall wherever possible. address it
and the other issues raised above in this report, although full consideration of the scope
of some of them is far beyond what we will be able to cover.)

IV. The GVS/EAGLE Test Bed Scenario
In order to demonstrate the algorithms and data structure necessary to incorporate

the GVS future-state decisionmaking am chitecture into EAGLE. i\e shall use a single. very
representative scenario. (This approach is similar to that we used to demionstrate the proof
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Selected Blue Phia-s
Mlaxn-atk-conduct -passage-of-linies (bde/diN-)
Conduct -spt-at k-through-feba-bn (bde/div)
Conduct -spt-atk-throughi-feba-reg (bde/div)
Mai-tn-atk-penetrate-feba-bzils (b~de/div)
Main- at k-at t ack-2nd-ech-feba-reg (hdel/div)
Hasty-Defend-in-place
Mlaini-atk-attack-2echi-felba,-div- (bdel'div)
Mlain-at k-at tack-2ech-reg-felba-di-v (bde/di-v)
INMain- at k-at t ack-rear-feba- reg (bde/div)
Follow (bde)
Conduct-spt-atk-feba-reg (div)
Nlii-,atk--pene t rate-febai-reg, ( div)
N lain- at k-penetrate-2ecli-feba- div (div,)

Blue Ta-Sks
Attack
Defend
Deploy
Delay
Marshal
Follow

Blue, Operational Activities
Traveling-Overwat cli
Bounding.- Overwatcli
Break-Contact
Defeat
Defend -A ssenmbly- -\rea
Defend-Bat tle-Psnl
Defend-Hasty- Bat tle-Psn
Dela-y
Occupy- Assembly- Area
Occupy-Battle-Position

Figure I FAGLE Phases. Tasks and Operational Activities

of the basic GVS concept in VIC [12].) The basic elements of this scenario are graphically
portrayed in Figure 2.

In this scenario. a Blue brigade. conisisting of two miechanzed task forces. one, armor
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Fig~urc 2 -The~ B ati u Sceniri~o

task force arid an attack helicopter bat ta~lioni has beein ta ked to peniet rate all at tited

d(lentding( Red motorized rifle regiment with which the brigade is already in contact. The
Red regimntn Is in a hasty defense wvith it , two remainming motorized rifle bat talions on
line in Its first echelon. and it, tank battalion situated in an asemiblv area for use as a
counterattack force. In addition. but clearly important for thle Blue rormmander's planiniit.
a Red tank regimrent ( probably from the same division as the (defending motorized rifle
regiment an(1 probably with the mission of division-level counterattack) is situated outside
the brigade's- area of operations. We assume the blue commander's general plan NN'ill
be to attack wvith the two mechanized task forces abreast. to sieze objectives A and B
respectively, then pass the armor tasK force through to sieze objective C while the tw,,o
mechanized task forces consolidate their objectives. Upon 5ecurilo objective C, the armor
task force will consolidat, that objective while some unspecified (for this example) foAllowing

brigade pa ,e.,trog to exploit the attack. The at tack helicopter battalion is in reserve.
Mobili tv corridors are indicated by tile siolid hines CO()nllect incr m1t s and objectives.

i tcrmns of the EAGLE strui cture. we p( stiula e thle 1 rigadle is part of a division



Division Tasks -Blue,-NI n~i-atk-penetrate-feba,-reg
B Blue- M l i- at k-penet rat e- 2ech- fela-li11V

-Blue-Hasty-Defend-ini-place

Figure 3 - Pllasc- of the Division Plan

Division Phase - Bluie-MaiCUn-atk-penetrate-feba-reg
Brigade Phases -Nanakpntaefh-u

-\Mali-atk-at tack-2nid-echi-feba)-reg,
-Hasty-Defend-in-place

Division Pha-. leNli-t-entae2chfb-i
Brigade Phases -Hasty-Def -inli-place

Division Phase -BleHat-en-ipac

Brigade Phases -Prepare-for-attaick

Figure 4 -Phases of the Brigade Pl,1n

plani/order that consists of the ta.sks showni in Figure 3. As- Neicusdavrthi
division plan then wvill create a brigade plan/order consisting of one or more phases for
each phase of the diviSion plan. as. for e\xample, shown in Figure 4. Last ly. thle r; b
wvill then convert each phase order it has received from the division into one or Moretak
for each subordinate unit. as. for example, is show.n in Figure 5.

In an actual operation each level of command is assigned an area of operations (AO).
The AO includes an actual physical "box" on the ground, as is shown for the brigade in Fig-
ure 2. By doctrine, each commander is responsible for everything that happens- in his A0.
and. subject to whatever rules of engagement apply. has the authority to attack all enemyv
assets in his AO with whatever means may be appropri ite. Thus, as Figure 2 indicates. at
Unit's AO must encompass not only territory oil the enemy side of the FLOT, but onl the
friendly side back to that unit's rear boundary. W\hen command headquarters plan. t hey
commonly assign subareas of their assigned AO to their subordinates. Thus. for eape
Figure 6 shows the brigacde subdividing a p~ort ion of its AO) into two haot alion-sized AC) s
and then assigning each of these to one of tile lead attacking b~attralions.

Also( Iby doctrine, each level of convind has an area of interest ( A()I). In c( ii ast
to t'w A() h( vever. thle AOL is. not nlecessatrily a physical areal onl thle ground a1( iid i i t



Division Phase - Blue-Mairi-at k-penet rate -feba-reg
Brigade Phase - N tain-atk-penet ratec-feha-bnis

IF 1/92 Tasks - attack
- defend

TF 3/SO Tasks - attack
- defend

IF 3/5 Tasks - follow
Atk Hel Tasks - marshal

Brigade P ha- se - NMain- at k-at t ack- 2nd-ech- feba-reg
TF 1/92 Tasks - defend
IF 3/SO Tasks - defend
IF 3/5 Tasks - deploy

- attack

- defend

Atk Hel Tasks - marshal

Brigade Phase - Hasty-Defenid-iin-place
IF19Caks3dfn
IF 3/SO Tasks - defend
IF 3/50 Tasks - defend

Atk Hel Tasks - marst ial

Division Phase - Blue-Nlaiii-atk-pene(trate -2echi-feba-div
Brigade Phase - Hastv-Defend-in-place

IF 1/92 Tasks - defend
IEF 3/8O Tasks - defend
IF 3/3 Tasks - defend
Atk Hel Tasks - miarshlil

Division Phase - Blue-Hasty- Defend-in-place
Brigade Phase - Prepare-for-attack

IF 1/92 Tasks - marshal
IF 3/SO Tasks - marshal
IF 3/5 Tasks - marshal
Atk Hel Tasks - marshal

Figure 5 - Resolution Unit Tasks in the Brigade Plan

assigned by higher headquarters. Rather, the AOL really relpr-sents that timr horizon out
to which a co'frnian(r must be looking in order to effectively react to unforseen events

9
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Figure 6 - Areas of Operation for the Basic Scenario

or counter unexpected threats. While there are suggested doctrinal times associated with
the AOI at each level of command. determination of each unit's AOI is up to that unit's
commander and depends primarily on the length of that headquarters' decision cycle.
The AOI will normally contain not only the unit's AO, but also appropriate portions of
higher and adjacent units' AO's. The AOI plays a pivotal role in the GVS architecture.
In GVS. the combat power of assets which are not available for employment at the present
time are exponentially discounted depending on the time interval until they will become
available [10], and the "time constant" used to normalize this discounting is determined
by iequiring that any asset at the outer boundary of the AOI have only a nominal frac-
tion (5%) of its full power. Figure 7 displays both the brigade's and one battalion's AOI's
superimposed over the respective AO's, assuming the appropriate time horizons are three
hours for the brigade and one hour for the battalion. (Note that the AOI used in this
context should not bc confused with what doctrinally referred to as a i,amed area of inter-
est (NAI). An NAI is some specific limited area on the ground where a commander may
focus intelligence collection assets. e.g. to discern enemy movements.)
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Figure 7 - Areas of Interest for the Basic Scenario

Althou gh we shall not be able to develop this theme fully in this report. another key
concept from ALAR"Ml which we believe may be exploitable-, in developing a future-state
prediction capability for EAGLE is that of the time domain networks (TD.N). A TD.N
is effectively simply a PERT or CPM network representation of a plan. The nodes of it
TDN represent critical events in the plan and the arcs represent the phases or operational
activities necessary to progress through the plan. Such networks are integral parts of Soviet
planning [8], where they are used to automate the process of predicting combat outcomes.
(The analogous process, when done by a U. S. G3 is called "war gaming a course or action." )
Conceptually, creation of such a TDN for each plan in EAGLE should be relatively simple,
given the already existing plans and orders structure. Figure 8 displays such a TDN for
our sample scenario. Actually. the network in Figure 8 is slightly ambiguous in that.
without reference to the phiase transition rules for this order in the EAGLE Tactics KB,
it is not clear whether both mechanized task forces. or only one, would have to reach
their objectives befo~re the arnior task fo~rce can deploy. (For our scenario, we shall assume
that both mechanize(' task fo~rces must reach their objectives prior to deployment of the

11



armor task force.) In general. we expect that all on-order TDN transitions could be
reduced to simple "and" or "or" combinations of completions of the preceeding arcs. or
such combinations plus a specified time in the network having passed.

!N

_ 0o, .

Figure 8 - The Time Domain Network for the Basic Scenario

V. The GVS Process for EAGLE

In this section, we provide a step-by-step outline of our proposed implementation of the
GVS into EAGLE. Where known, specific EAGLE/LISP/IKEE notation is used. In order
to demonstrate the steps, the scenario presented in the previous section will be assumed.
While our focus for this example is a brigade and its associated battalion resolution units,
adding echelons above the brigade level should follow similar logic. The primary differences
when higher echelons (e.g. divisions or corps) are added will be longer planning horizons
and a broader spectrum of assets to be considered in the alternatives.

The GVS process described below should be performed at a every change of phase
within a plan, irrespective of the unit level, and thereafter at a regular time interval, de-
pending on the unit. We initially recommend that the resolution units be reforecasted
every 30 minutes. brigades every 60 minutes. divisions every 120 minutes, and corps ev-
ery 240 minutes. (Similar times should be utilized when GVS prediction is implementeu
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for the RED Units). Our initial proposal will address the Blue forecast only. The principal
steps in this process are described below.

Step 1 - As each plan is prepared for each unit in the preprocessor. an Area
of Interest associated with that plan must be generated,

The AOI may be a geometric area (assumed to have piecewise linear boundaries) or a time
horizon. A slot, e.g. a-gvs-area-interest-(unit designation). which points to the AOI,
must be created as part of the plan. The two characteristics required of the AOI are:

a. It must be large enough (in both the time and space domain) to fore#-, to the
end of the objective of the Plan.

b. It must relate to each "terrain analysis" area currently done in the preprocessor.

(As discussed earlier, it might prove quite useful for the preprocessor to also generate a
time domain network for each plan. This TDN could be stored as a linked list structure
equivalent to Figure S. Developing the necessary code to generate this TDN from an EA-
GLE plan may be a non-trivial endeavor, especially as regards the conversion of EAGLE
transition rules to network activity start/stop conditions. Nevertheless, as we shall point
out later. having such a network available, along with the necessary references to associ-
ated ground coordinate, e.g. objectives, offers an alternative mechanism for future state
prediction, and is a potentially fruitful area for further research.)

For our subsequent discussion, we assume that we can access the AOI for the each
plan. We also assume that a routine will be available which can test whether or not a given
location is in some specified unit's AOL although calls to this routine will occur later in
the process.

Step 2 - Each unit should have two slots, one corresponding to a list of the
"tail numbers" of each friendly unit in the AOI and the other corresponding to a
list of the perceived tail numbers of all enemy units known to the unit.

The friendly units would include all organic assets plus any Artillery, ADA, Fixed-Wing.
Engineer, Logistics, etc. units attached or OPCON to the unit being considered. With
slight modifications, the current a-local-sitmap-friendly slot of the perceptions ob-
ject in the Characteristics-KB could be used for this. In our example, only ground ma-
neuver units (defined as including helicopter assets) will be considered. The list of en-
emy units could be stored in either the (modified) a-local-sitniap-enemy slot of the
same object, or in the (modified) a-prioritized-opponents slot of the res-decision-
factors object of the same KB. Enemy units would be added to this list from two sources:

a. Those within the visible detection (currently 4K) circle of each resolution unit.
Some code modification would be required to ensure these are passed "up the
line" to the resolution unit's command headquarters.

b. Those that are detected through the INTEL/FUSION process which currently
produces target to Headquarters Units and to the Artillery FSE. Again, some code
changes would be required here, e.g. to include passing appropriate information
up and down the line.
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The modifications to the detection list data structure should ensure that each detected
enemy unit in the AOI has not only a tail number, but a location, a direction and speed
of movement, and a last time detected (and perhaps the identity of the detector). In the
full model, some filtering of this list based on size would also be appropriate. For example.,
brigades might keep track of only battalion-size enemy units, while divisions might track
only regimental-size enemy units.) In any instance, we shall assume that such a list of
friendly and enemy units is available for consideration during any forecast.

Steps 1-2 are not properly part of the actual GVS forecast calculations, but must
nevertheless be implemented before the calculations can be done. The remaining steps
will then be cycled through for each unit which is being forecast. For our example, this
means the brigade and its associated resolution units.

Step 3 - Compute, at the current time step, the total "discounted" power for
each resolution unit and the brigade headquarters, using the AOI as previously
determined.

The actual mechanics of the computation of discounted power are documented in previous
GVS papers [11]. This is basically a distance (time and space) discounting, relative to
the blue force, which produces a current point estimate of the power of both the red and
blue forces. We propose, at least initially, to base the measure of power for the GVS
curves on the EAGLE a-unit-eff attribute, which is computed on a scale of 0 - 100, and
which represents the percentage of unit effectiveness relative to what if would be at full
(TOE) strength. The unit's full strength firepower score would then be multiplied by
this percentage to give the adjusted power (before time discounting). We would propose
that, at a later time, more sophisticated measures be investigated, e.g. through use of
a Required Manning Level, related to Radiation, MOPP, and Crews available., etc. (The
categorical judgment methodology proposed by Crawford [2] has several attractive featurs
with respect to this issue.)

This power calculation is, of course only a single point estimate. not a projection. How-
ever, we believe the power calculated for the Red resolution units provides a potentially
useful quantitative basis for determining the order of precedence in the a-prioritized-
opponents slot in the res-decisio n-factors object in the Characteristics-KB. Further-
more, although we have not yet fully developed the argument for this assertion, there is
also a possibility that the ratio of the overall Red and Blue GVS powers derivable from this
point estimate might also provide a simple, yet powerful basis for inferring the existence
of a feasible plan to accomplish a given tactical goal - provided the time horizon within
which the goal must be accomplished is within the AO and provided the size of the AO has
been corr,.ctly chosen - without having to completely war-game the plan through. (This
claim, were it to prove out, would be analogous to our earlier observation that in many
mathematical instances it can be proven that a problem has a solution, even though one
cannot produce that solution. However, as we noted, we have not pursued this particular
line of investigation sufficiently to be certain of its utility.)

However. even if a sufficiently favorable current GVS ratio were to ensure the existence
of a feasible plan, that does not necessarily guarantee any particular plan is feasible, only
that some plan should be. Neither will a favorable GVS ratio. in and of itself, indicate how
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feasible plans might be arrived at. Verifying the feasibility of any, particular plan requires
an explicit future-state prediction, i.e., to use the mathematical analogy, substitution of the
candidate solution into the problem. The "brute force," and clearly unacceptable way to
do this projection would be to run the actual model, within itself, and observe the results.
We believe that acceptable surrogates for this procedure are computationally feasible, and
shall now describe one such alternative.

Step 4 - Begin the GVS projecting process using At minute time increments.

(We propose using a At of 5 minutes for resolution units, and possibly longer for higher level
command units.) We currently believe that the most efficient vehicle for this projection will
be the creation of temporary or "shadow" objects, which have virtually identical structure
to the "real" resolution units. Correctly done, this will allow the use of the inheritance
structure of EAGLE to efficiently pass any necessary attributes. These shadow units could
then be moved, attrited, etc., without the need to make any changes to the real units. This
approach would, however, require careful purging at the end of the forecast of any reference
to these shadow objects from portions of the model such as the Terrain Manager.

Step 5 - Check next task for unit to determine whether a transition from
the current task is required.

This will require reference to the plan as stored in the Tactics-KB to determine, based on
the positions and powers, whether a change of phase/tasks is required. Here again, having
a stadow unit with pointers to all of the attributes, including the phase transition rules
for that unit's specific plan, would greatly simplify this process.

As alluded to earlier, whether a new task is implemented on-order as opposed to at a
particular point in time can be a crucial issue. In actual operations. local commanders will
probably prefer that all transitions be on-own-initiative (such as being able to order 3/5
to attack down the appropriate corridor depending on how the "fight is going"), since this
retains maximum flexibility, However, from higher's point of view thc attainment of Ob-
jective C by 1800 may be essential, subject to certain constraints on losses by subordinates.
The EAGLE structure (and certainly GVS planning) must be responsive to both. As noted
above, we propose to initially use the default rules, modified as necessary, to determine
whether an on-order phase change will fire. At the same time, we will also impose a time
constraint on attainment of the final objective, i.e. it must be forecast to occur before the
end of the planning horizon, thus perhaps "forcing" (or determining as infeasible) some
tasks which may exist for the unit. It has been suggested that the EAGLE construct of the
Abstract Higher Level may be used as the "referee" between time and event driven tactics.
Correct resolution of forecasted phase changes is a critical area. Also a consideration here
is the slack time issue which we have previously commented on.

Step 6 - For resolution units in contact, project the attrition during the
upcoming time step.

15



Note that determining whether a phase change occurs at the start of this interval must
precede this step, since Lh"- attrition will relate directly to the task to be performed during
the upcoming interval. Determiniing which units are in contact can be done very straight-
forwardly. e.g. by a simple geometric distance calculation between centers of mass. Once
this is determined, we propose to project the attrition using the simple, range-dependent,
homogeneous, square law difference equation counterpart of:

dx (1 -a Rnz

dt Rmax

dy =_ bx (1 RR

where

a = casualties/y-firer-time

b = ctsualties/x-firer-time

R = range between firer centroids

Rmax = closest range at which no attrition is possible

p, = shaping parameter for attacker (x)

py = shaping parameter for defender (y)

(The shaping parameter relates to the types of weapons in the firing force and is well
documented by Bonder and Farrell.) This surrogate for the detailed attrition process
in EAGLE is very rEpresentative of how a planner would war-game alternatives in an
aggregate sense. At the completion of this step, an estimate of the attrition, based on
location at the start of the time interval has been made. This calculation is necessary not
only to be able to compute powers at the next step, but also to be able to use existing
EAGLE logic for movement. If the shadow unit object implementation is used. this newly
computed value of a-unit-eff can be stored in the same named slot as used by the real
iint.

Step 7 - Forecast a new route if the unit has not reached its final objective,
has no additional routes stored, and the end of the planning horizon has not yet
been reached.

This step, in addition to the move step described below, raises the issue of how much of
the existing EAGLE code to use. If a new route is determined in the forecast using C2-
processes (which sets indices for the movement rules) then extreme care must be taken to
restore the data before exiting from the shadow objects. Our current inclination is to use
the EAGLE move rules algorithms for the movement forecast, whereas we 4- r- prnp',v
using the EAGLE code for the attrition forecast.

Step 8 - Move the units for one time step along, the network of routes.
toward their next objective.
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The rate of movement will be based on the matrix of speeds for each operational activity
for GO. SLOW GO, NO GO terrain which is available in the KB. The raw speed inputs,
modified by the attrition speed degradation factors as used in the resolve-attrition-event
in EAGLE, will be used. This is essential in order not to inflate movement rates in the
forecast.

Step 9- Return to Step 5 unless the planning horizon time has been reached.

Step 10 - When the planning horizon has been reached, invoke the rules of
feasibility.

These rules will be based on mathematical relationships between the RED and BLUE
curves generated. (In the VIC test we used the very simple criterion of did the at-
tacker/defender power ratio exceed 3:1 or not. The determination of the exact rules to use
here is really another research issue in itself.) The fundamental question which this step
answers is "will my current plan remain feasible out to the planning horizon?- If the answer
to this question is yes, then the GVS routine would return control to the EAGLE execution
model to proceed. Otherwise, alternative courses of action would need to be developed and
evaluated (again using future-state prediction). Developing alternative courses of action
is not trivial, and invclves issues well beyond the scope of this report (some of which were
addressed, at least generally, in [11] and [12]). However, we would expect that if any con-
tingency missions exist in the Scenario-KB, then the first step here would be to conduct
explicit future-state predictions for the n. Then. if none of the contingency missions could
restore feasibility, then, a noted above, we would either have to generate a feasible course
of action "on the fly" - a much more difficult problem than proving feasibility of an already
developed course - or stop the model for human intervention. A abbreviated set of sample
calculations, using the steps described above and keyed to our scenario, is contained in
Appendix 1.

We would observe that this proposal. because it would utilize much of the existing
EAGLE code, would probably be fairly straightforward to implement. On the other hand,
because it utilizes EAGLE code for essentially all but the attrition forecast, it might turn
out to be closer to the earlier discussed (and not particularly attractive) recursive calling of
the model by itself. An alternative would be the TDN forecasting investigated by Manzo
and Hughes [8]. This would allow for the use of very simple heuristics (e.g. those found in
manuals such as [14]) along each of the arcs, and probably greatly reduce the computation
required - at the cost of a more complicated data structure and longer development time.

VI. Summary and Conclusions

In this report. we have outlined a proposed future-state decisionmaking architecture
for the EAGLE combat model. We have not actually implemented this proposed archi-
tecture. however its implementation should be fairly straightforward because the design
utilizes a significant amount of existing code. Implementing this architecture would enable
the model to determine, ahead of time. when given tactical plans were no longer feasible.
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so that appropriate alternative plans could be either developed or implemented. The pro-
posal may be computationally intensive, and therefore an alternative architecture is also
proposed, although implementing this alternative architecture would require significantly
greater programming effort.

In any event, if the EAGLE model is to avoid what we believe to be the fundamental
pitfall of all current systemic combat models - present-state decisionmaking - our proposal,
or some variant of it, will need to be incorporated into EAGLE.
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Appendix 1 - Sample GVS Calculations

This appendix presents sample calculations of the Generalized Value System forecast
of the power of the brigade-level task force shown in Figure A-1. (This is the same scenario
described in the body of the report, with coordinate locations added. The coordinates are
in kilometers relative to an origin in the lower-left corner of the map.) The example is
presented as a series of tables for each of three options described below. Each series of
tables describes the status (power) of Blue and Red, starting at the current time and
forecasting to the end of the plan represented by that option (or to infeasibility).

As described in the report, an exponential discounting factor is applied to each u'-it.
based on the expected time until that unit is in position to exert its power by (in this case)
direct fire. This discounting is reflected in column 6 of the tables. The power of each unit
in contact is also reduced based on attrition losses. Column 4 in the tables reflects these
losses. Finally, we use as the measure of feasibility for the Blue plan that the ratio of Blue
to Red power must exceed two.

As not 2d above, there is one series of tables for each of three options:
Option 1 assumes that neither Red unit (4th Tank Battalion or 51st Tank Regiment)

moves to counter Blue. In this case, the power ratio always exceeds the threshold and
therefore Blue should be able to reach Objective C by time 100.

Option 2 assumes that the 4th Tank Battalion moves to counterattack Blue TF 3/5
at the road junction located at (16,6). In this case, the power ratio falls below the threshold
at time 90. which indicates that. unless Blue were to take further action. he may not be
able to accomplish the mission of taking Objective C.

Option 3 assumes that the 4th Tank Battalion moves to counterattack Blue TF 3/3
at the road junction located at (16,6), but that Blue counters by committing the Attack
Helicopters, at time 80. so that they can attack by time 90, i.e. before the counterattack
hits TF 3/5. This restores the feasibility ratio, and indicates that Blue has sufficient
power to handle this contingence. More importantly, and this is a very important aspect
of future-state prediction, not only does this calculation show that this alternative will
restore feasibility, but it also indicates WHEN to alternative needs to be implemented. In
this instance, the calculations indicate there is no need to act at the current time, since
the power ratios are still feasible 60 minutes from now, and the alternative plan does not
need to be implemented until after that time.
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